Computational-Intelligence-Based Spectrum-Sharing Scheme for NOMA-Based Cognitive Radio Networks

Author:

Sultan Kiran1ORCID

Affiliation:

1. Department of CIT, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

The integration of non-orthogonal multiple access (NOMA) technology and cognitive radio networks (CRNs) promises to enhance the spectrum utilization efficiency of 5G and beyond-5G (B5G) mobile communication systems. In this article, a NOMA-based spectrum-sharing scheme is proposed for dual-hop CRNs in which a primary transmitter separated by a long distance from the primary receiver communicates via NOMA-based CRN. In this scenario, we mathematically formulate a constrained optimization problem to maximize the sum rate of all secondary users (SUs) while maintaining the total transmit power of the system. Inspired by the effectiveness of computational intelligence (CI) tools in solving non-linear optimization problems, this article proposes three CI-based solutions to the given problem aiming to guarantee quality of service (QoS) for all users. In addition, an enhanced version of the classic artificial bee colony (ABC) algorithm, referred to here as the enhanced-artificial-bee-colony (EABC)-based power allocation scheme, is proposed to overcome the limitations of classic ABC. The comparison of different CI approaches illustrates that the minimum power required by the secondary NOMA relay to satisfy the primary rate threshold of 5 bit/s/Hz is 20 mW for EABC, while ABC, PSO and GA achieve the same target at 23 mW, 27 mW and 32 mW, respectively. Thus, EABC reduces power consumption by 13.95% compared to ABC, while 29.78% and 46.15% power-saving is achieved compared to PSO and GA, respectively.

Funder

King Abdulaziz University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3