Physical Modelling for Sound Synthesis

Author:

Mullan Eoin1

Affiliation:

1. Queen’s University Belfast, N. Ireland

Abstract

While the first computer games synthesised all their sound effects, a desire for realism led to the widespread use of sample playback when technology matured enough to allow it. However, current research points to many advantages of procedural audio which is generated at run time from information on sound producing events using various synthesis techniques. A specific type of synthesis known as physical modelling has emerged, primarily from research into musical instruments, and this has provided audio synthesis with an intuitive link to a system’s virtual physical parameters. Various physical modelling techniques have been developed, each offering particular advantages, and some of these have been used to synthesise audio in interactive virtual environments. Refinements of these techniques have improved their efficiency by exploiting human audio perception. They have been implemented in large virtual environments and linked to third party physics engines, unveiling the potential for more realistic audio, reduced production costs, faster prototyping, and new gaming possibilities.

Publisher

IGI Global

Reference45 articles.

1. The missing link: Modal synthesis;J. M.Adrien;Representations of musical signals,1991

2. Fast modal synthesis by digital waveguide extraction

3. Numerical Sound Synthesis

4. Modal Synthesis for Arbitrarily Shaped Objects

5. Game Sound

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New Wine in New Skins;Game Sound Technology and Player Interaction

2. Player-Game Interaction Through Affective Sound;Game Sound Technology and Player Interaction

3. Uncanny Speech;Game Sound Technology and Player Interaction

4. A Combined Model for the Structuring of Computer Game Audio;Game Sound Technology and Player Interaction

5. Sound for Fantasy and Freedom;Game Sound Technology and Player Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3