Towards Data Intensive Many-Task Computing

Author:

Raicu Ioan1,Foster Ian2,Zhao Yong3,Szalay Alex4,Little Philip5,Moretti Christopher M.5,Chaudhary Amitabh5,Thain Douglas5

Affiliation:

1. Illinois Institute of Technology, USA & Argonne National Laboratory, USA

2. University of Chicago, USA & Argonne National Laboratory, USA

3. University of Electronic Science and Technology of China, China

4. Johns Hopkins University, USA

5. University of Notre Dame, USA

Abstract

Many-task computing aims to bridge the gap between two computing paradigms, high throughput computing and high performance computing. Traditional techniques to support many-task computing commonly found in scientific computing (i.e. the reliance on parallel file systems with static configurations) do not scale to today’s largest systems for data intensive application, as the rate of increase in the number of processors per system is outgrowing the rate of performance increase of parallel file systems. In this chapter, the authors argue that in such circumstances, data locality is critical to the successful and efficient use of large distributed systems for data-intensive applications. They propose a “data diffusion” approach to enable data-intensive many-task computing. They define an abstract model for data diffusion, define and implement scheduling policies with heuristics that optimize real world performance, and develop a competitive online caching eviction policy. They also offer many empirical experiments to explore the benefits of data diffusion, both under static and dynamic resource provisioning, demonstrating approaches that improve both performance and scalability.

Publisher

IGI Global

Reference75 articles.

1. Adams, D. L., Harrison, K., & Tan, C. L. (2006). DIAL: Distributed interactive analysis of large datasets. Conference for Computing in High Energy and Nuclear Physics (CHEP 06).

2. Allcock, W., Bresnahan, J., Kettimuthu, R., Link, M., Dumitrescu, C., Raicu, I., & Foster, I. (2005). The Globus striped GridFTP framework and server. ACM/IEEE SC05.

3. Andrade, H., Kurc, T., Sussman, A., Saltz, J. (2007). Active semantic caching to optimize multidimensional data analysis in parallel and distributed environments. Parallel Computing Journal, 33(7-8).

4. ANL/UC. (2007). TeraGrid site details. Retrieved from http://www.uc.teragrid.org/tg-docs/tg-tech-sum.html

5. Run-time adaptation in river

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3