Tree-Like Distributed Computation Environment with Shapp Library

Author:

Gałecki Tomasz,Daszczuk Wiktor BohdanORCID

Abstract

Despite the rapidly growing computing power of computers, it is often insufficient to perform mass calculations in a short time, for example, simulation of systems for various sets of parameters, the searching of huge state spaces, optimization using ant or genetic algorithms, machine learning, etc. One can solve the problem of a lack of computing power through workload management systems used in local networks in order to use the free computing power of servers and workstations. This article proposes raising such a system to a higher level of abstraction: The use in the .NET environment of a new Shapp library that allows remote task execution using fork-like operations from Portable Operating System Interface for UNIX (POSIX) systems. The library distributes the task code, sending static data on which task force is working, and individualizing tasks. In addition, a convenient way of communicating distributed tasks running hierarchically in the Shapp library was proposed to better manage the execution of these tasks. Many different task group architectures are possible; we focus on tree-like calculations that are suitable for many problems where the range of possible parallelism increases as the calculations progress.

Publisher

MDPI AG

Subject

Information Systems

Reference60 articles.

1. Accelerating Large-scale Reservoir Simulations Using Supercomputers

2. Distributed algorithm for empty vehicles management in personal rapid transit (PRT) network

3. Ant Colony Optimization for Deadlock Detection in Concurrent Systems

4. 2-Vagabonds: Non-Exhaustive Verification Algorithmhttps://www.springer.com/gp/book/9783030128340

5. A Fork() in the Roadhttps://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19.pdf

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3