Ensemble Learning via Extreme Learning Machines for Imbalanced Data

Author:

Abuassba Adnan Omer1,Zhang Dezheng O.2,Luo Xiong2

Affiliation:

1. Arab Open University, Palestine

2. School of Computer and Communication Engineering, University of Science and Technology Beijing, China

Abstract

Ensembles are known to reduce the risk of selecting the wrong model by aggregating all candidate models. Ensembles are known to be more accurate than single models. Accuracy has been identified as an important factor in explaining the success of ensembles. Several techniques have been proposed to improve ensemble accuracy. But, until now, no perfect one has been proposed. The focus of this research is on how to create accurate ensemble learning machine (ELM) in the context of classification to deal with supervised data, noisy data, imbalanced data, and semi-supervised data. To deal with mentioned issues, the authors propose a heterogeneous ELM ensemble. The proposed heterogeneous ensemble of ELMs (AELME) for classification has different ELM algorithms, including regularized ELM (RELM) and kernel ELM (KELM). The authors propose new diverse AdaBoost ensemble-based ELM (AELME) for binary and multiclass data classification to deal with the imbalanced data issue.

Publisher

IGI Global

Reference70 articles.

1. A heterogeneous ensemble of extreme learning machines with correntropy and negative correlation

2. Abuassba, A., Dezheng, Z., & Mahmood, Z. (2018). Semi-supervised Multi-Kernel Extreme Learning Machine. Procedia Computer Science, 129, 305-311.

3. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., & Herrera, F. (2011). Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. Journal of Multiple-Valued Logic & Soft Computing, 17.

4. Fuzziness based semi-supervised learning approach for intrusion detection system

5. Prediction of hydrological time-series using extreme learning machine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3