Prediction of hydrological time-series using extreme learning machine

Author:

Atiquzzaman Md1,Kandasamy Jaya1

Affiliation:

1. School of Civil and Environmental Engineering, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia

Abstract

Applying feed-forward neural networks has been limited due to the use of conventional gradient-based slow learning algorithms in training and iterative determination of network parameters. This paper demonstrates a method that partly overcomes these problems by using an extreme learning machine (ELM) which predicts the hydrological time-series very quickly. ELMs, also called single-hidden layer feed-forward neural networks (SLFNs), are able to well generalize the performance for extremely complex problems. ELM randomly chooses a single hidden layer and analytically determines the weights to predict the output. The ELM method was applied to predict hydrological flow series for the Tryggevælde Catchment, Denmark and for the Mississippi River at Vicksburg, USA. The results confirmed that ELM's performance was similar or better in terms of root mean square error (RMSE) and normalized root mean square error (NRMSE) compared to ANN and other previously published techniques, namely evolutionary computation based support vector machine (EC-SVM), standard chaotic approach and inverse approach.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3