Affiliation:
1. Department of Information Technology, Jadavpur University, India
2. Computer Science and Engineering, Jadavpur University, India
3. Center for Computing Research, Instituto Politécnico Nacional, Mexico
Abstract
Given two textual fragments, called a text and a hypothesis, respectively, recognizing textual entailment (RTE) is a task of automatically deciding whether the meaning of the second fragment (hypothesis) logically follows from the meaning of the first fragment (text). The chapter presents a method for RTE based on lexical similarity, dependency relations, and semantic similarity. In this method, called LSS-RTE, each of the two fragments is converted to a dependency graph, and the two obtained graph structures are compared using dependency triple matching rules, which have been compiled after a thorough and detailed analysis of various RTE development datasets. Experimental results show 60.5%, 64.4%, 62.8%, and 61.5% accuracy on the well-known RTE1, RTE2, RTE3, and RTE4 datasets, respectively, for the two-way classification task and 54.3% accuracy for three-way classification task on the RTE4 dataset.