A question-entailment approach to question answering

Author:

Ben Abacha AsmaORCID,Demner-Fushman Dina

Abstract

Abstract Background One of the challenges in large-scale information retrieval (IR) is developing fine-grained and domain-specific methods to answer natural language questions. Despite the availability of numerous sources and datasets for answer retrieval, Question Answering (QA) remains a challenging problem due to the difficulty of the question understanding and answer extraction tasks. One of the promising tracks investigated in QA is mapping new questions to formerly answered questions that are “similar”. Results We propose a novel QA approach based on Recognizing Question Entailment (RQE) and we describe the QA system and resources that we built and evaluated on real medical questions. First, we compare logistic regression and deep learning methods for RQE using different kinds of datasets including textual inference, question similarity, and entailment in both the open and clinical domains. Second, we combine IR models with the best RQE method to select entailed questions and rank the retrieved answers. To study the end-to-end QA approach, we built the MedQuAD collection of 47,457 question-answer pairs from trusted medical sources which we introduce and share in the scope of this paper. Following the evaluation process used in TREC 2017 LiveQA, we find that our approach exceeds the best results of the medical task with a 29.8% increase over the best official score. Conclusions The evaluation results support the relevance of question entailment for QA and highlight the effectiveness of combining IR and RQE for future QA efforts. Our findings also show that relying on a restricted set of reliable answer sources can bring a substantial improvement in medical QA.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Relevance Detection using Text Entailment for Health-related Question-Answer Texts with Imbalanced Data;2024 International Seminar on Intelligent Technology and Its Applications (ISITIA);2024-07-10

2. Exploring BioClinical BERT’s NLP Capabilities with Explainability Techniques;2024 International Conference on Emerging Technologies in Computer Science for Interdisciplinary Applications (ICETCS);2024-04-22

3. Medical Question Summarization with Entity-driven Contrastive Learning;ACM Transactions on Asian and Low-Resource Language Information Processing;2024-04-15

4. Question answering systems for health professionals at the point of care—a systematic review;Journal of the American Medical Informatics Association;2024-02-16

5. Are my answers medically accurate? Exploiting medical knowledge graphs for medical question answering;Applied Intelligence;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3