Reinforcement Learning in Social Media Marketing

Author:

Eklund Patrik1ORCID

Affiliation:

1. Umea University, Sweden

Abstract

In this chapter, the authors describe an architecture for reinforcement learning in social media marketing. The rule bases used for action selection within the architecture build upon many-valued (fuzzy) logic. Action evaluation and internal learning is based on neural network like structures. In using variables measuring the effect of advertising, we must understand direction of influence between advertiser, owning the content of the advertisement, and advertisee, as the target of an advertisement, and as facilitated by social media marketing. Examples are drawn from Facebook marketing.

Publisher

IGI Global

Reference18 articles.

1. The Development of the Hierarchy of Effects: An Historical Perspective.;T. E.Barry;Current Issues and Research in Advertising,2012

2. Learning and tuning fuzzy logic controllers through reinforcements

3. Bezdek, J. C. J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press.

4. Social media sentiment analysis: lexicon versus machine learning

5. Network size versus preprocessing;P.Eklund;Fuzzy Sets, Neural Networks and Soft Computing,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3