Machine Learning and Sensor Data Fusion for Emotion Recognition

Author:

Younis Eman M. G.1ORCID,Zaki Someya Mohsen2,Houssein Essam Halim1

Affiliation:

1. Minia University, Egypt

2. Al-Obour High Institute for Management, Computers, and Information Systems, Obour, Egypt

Abstract

In this article, the authors investigate the development of sensor data fusion-based emotion detection models. They use direct and continuous sensor data to construct emotion prediction models. They use sensor data fusion involving the environmental and physiological signals. This article integrates on-body physiological markers, surrounding sensory data, and emotion measurements to achieve the following goals: 1) collecting in the wild data set of multiple sensors; 2) using data fusion, feature fusion, and decision fusion for emotion recognition; 3) prediction of emotional states based on fusing environmental and physiological variables; 4) developing subject-dependent emotion detection models. To achieve that, they have done a real-world study “in the wild” with physiological and mobile sensors. The datasets come from participants walking around Minia University campus. The authors compared the obtained results to choose the best-performing model. Results show that D Tand RF outperforms SVM and KNN significantly by 1% or 2% (p <0.01) with an average accuracy of 0.97%.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3