Optimization Models in Google Ads Campaigns

Author:

Barreto Sérgio1ORCID,Barbosa Ricardo José Videira1,Barbosa Belem2ORCID

Affiliation:

1. University of Aveiro, Portugal

2. University of Porto, Portugal

Abstract

Google Ads is a powerful tool for companies wishing to gain visibility on Google searches, as it offers impression privileges for advertisers, by featuring the ad above the organic results listing. This chapter contributes to the optimization of Google Ads campaigns. It includes an empirical study with a sample of marketing professionals exploring their views on the challenges of Google Ads as a digital marketing tool. According to the participants in this study, Google Ads campaign profitability depends, largely, on the ability to choose a keyword pool that achieves the company's goals. Moreover, the complexity of these pay-per-click decisions, the costs involved, and its business implications demand more reasoned, quantified, and, if possible, optimized solutions. The chapter develops linear programming optimization models based on impressions, clicks, conversions, and billing. The models are tested on a real example using Excel optimization add-ins.

Publisher

IGI Global

Reference56 articles.

1. Albuquerque, J., Morla, R., Gabriel, D., & Campos, R. (2013). Sugestão de palavras chave para campanhas em motores de busca em arranque. Porto, Portugal. Retrieved from https://hdl.handle.net/10216/69731

2. Anca, B., & Daniela, D. (2008). Optimization and launch of a Google Adwords campaign. Annals of the University of Oradea, Economic Science Series, 17(4), 1289–1296. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=48755865&site=eds-live

3. A contribuição da indexação no processo de seleção de palavras-chave para a Google Adwords.;A.Araújo;Revista Brasileira de Biblioteconomia e Documentação,2017

4. Benge, G. (2014). Why integration is key: digital marketing versus offline marketing. Retrieved from https://www.koozai.com/blog/branding/digital-marketing-versus-offline-marketing/#

5. Applied Survey Methods

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital Customer Network Strategy Influences on Hotel Business;Innovations in Industrial Engineering;2021-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3