Predictions For COVID-19 With Deep Learning Models of Long Short-Term Memory (LSTM)

Author:

Wu Fan1,Shu Juan1

Affiliation:

1. Purdue University, USA

Abstract

COVID-19, one of the most contagious diseases and urgent threats in recent times, attracts attention across the globe to study the trend of infections and help predict when the pandemic will end. A reliable prediction will make states and citizens acknowledge possible consequences and benefits for the policymaker among the delicate balance of reopening and public safety. This chapter introduces a deep learning technique and long short-term memory (LSTM) to forecast the trend of COVID-19 in the United States. The dataset from the New York Times (NYT) of confirmed and deaths cases is utilized in the research. The results include discussion of the potential outcomes if extreme circumstances happen and the profound effect beyond the forecasting number.

Publisher

IGI Global

Reference88 articles.

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., . . . Zheng, X. (2016, May 31). TensorFlow: A system for large-scale machine learning. https://arxiv.org/abs/1605.08695

2. Use of artificial intelligence in infectious diseases

3. Forecasting the spread of the COVID-19 pandemic in Saudi Arabia using ARIMA prediction model under current public health interventions

4. American Psychological Association. (2017). Addressing the Mental and Behavioral Health Needs of Underserved Populations. American Psychological Association. https://www.apa.org/advocacy/workforce-development/gpe/populations

5. Forecasting COVID-19 Transmission in India Using Deep Learning Models

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Dark Side of ImageNet: Examining the Impact of Evasion Attacks on Deep Learning;2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC);2023-05-04

2. A Review on Machine Learning Approaches in COVID-19 Pandemic Prediction and Forecasting;Malaysian Journal of Medicine and Health Sciences;2022-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3