A Review on Machine Learning Approaches in COVID-19 Pandemic Prediction and Forecasting

Author:

Nazirun Nor Nisha Nadhira,Omar Nashuha,Selvaganeson Koshelya,Abdul Wahab Asnida

Abstract

Novel COVID-19 Coronavirus disease, namely SARS-CoV-2, is a global pandemic and has spread to more than 200 countries. The sudden rise in the number of cases is causing a tremendous effect on healthcare services worldwide. To assist strategies in containing its spread, machine learning (ML) has been employed to effectively track the daily infected and mortality cases as well as to predict the peak growth among the states or/and country-wise. The evidence of ML in tackling previous epidemics has encouraged researchers to reciprocate with this outbreak. In this paper, recent studies that apply various ML models in predicting and forecasting COVID-19 trends have been reviewed. The development in ML has significantly supported health experts with improved prediction and forecasting. By developing prediction models, the world can prepare and mitigate the spread and impact against COVID-19.

Publisher

Universiti Putra Malaysia

Subject

General Medicine

Reference33 articles.

1. 1. World Health Organization. WHO Coronavirus Disease (COVID-19) [Internet]. WHO.int. 2020 [cited 2021 Jan 31]. p. 1. Available from: https://covid19.who.int/

2. 2. Sohrabi C, Alsafi Z, O’Neill N, Khan M, Kerwan A, Al-Jabir A, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg [Internet]. 2020 Apr;76:71–6. Available from: https://www.sciencedirect.com/science/article/pii/S1743919120301977?casa_token=4Q82iMBJ7SIAAAAA:WH5nDSuGXlzqfzjjVkQ4nIOWhQR0p48aA_3zVG9pzm-r5IIT30Uf-ngNBJm4HZCyv4u_24d873o doi: 10.1016/j.ijsu.2020.02.034

3. 3. Wang P, Zheng X, Li J, Zhu B. Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics. Chaos, Solitons and Fractals [Internet]. 2020;139:110058. Available from: https://www.sciencedirect.com/science/article/pii/S0960077920304550?casa_token=eRXEJPKcRcUAAAAA:5fQ8_ozHDmIERAKMyc_ol-vLoHbUndeNHSlrtvx4WHW5N5MBz6UCcFmFLhppCc2_cWpOyT9nzP4 doi: 10.1016/j.chaos.2020.110058.

4. 4. Sharma S, Gupta YK. Predictive analysis and survey of COVID-19 using machine learning and big data. J Interdiscip Math [Internet]. 2021 Jan 12;24(1):1–21. Available from: https://doi.org/10.1080/09720502.2020.1833445

5. 5. Lalmuanawma S, Hussain J, Chhakchhuak L. Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review. Chaos, Solitons and Fractals [Internet]. 2020;139:110059. Available from: https://www.sciencedirect.com/science/article/pii/S0960077920304562?casa_token=_EogOtpK17AAAAAA:bA4FHv1PU8feFJfhnD96Pgkry4_W5D_2v9fIYV3A_wgMZgRv1Cn1MqD15uC76Rd_R5jvt2r0VdQ doi: 10.1016/j.chaos.2020.110059

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3