Multi Objective Resource Scheduling in LTE Networks Using Reinforcement Learning

Author:

Comsa Ioan Sorin1,Aydin Mehmet2,Zhang Sijing2,Kuonen Pierre3,Wagen Jean–Frédéric3

Affiliation:

1. University of Bedfordshire, UK and University of Applied Sciences of Western Switzerland, Switzerland

2. University of Bedfordshire, UK

3. University of Applied Sciences of Western Switzerland, Switzerland

Abstract

The use of the intelligent packet scheduling process is absolutely necessary in order to make the radio resources usage more efficient in recent high-bit-rate demanding radio access technologies such as Long Term Evolution (LTE). Packet scheduling procedure works with various dispatching rules with different behaviors. In the literature, the scheduling disciplines are applied for the entire transmission sessions and the scheduler performance strongly depends on the exploited discipline. The method proposed in this paper aims to discuss how a straightforward schedule can be provided within the transmission time interval (TTI) sub-frame using a mixture of dispatching disciplines per TTI instead of a single rule adopted across the whole transmission. This is to maximize the system throughput while assuring the best user fairness. This requires adopting a policy of how to mix the rules and a refinement procedure to call the best rule each time. Two scheduling policies are proposed for how to mix the rules including use of Q learning algorithm for refining the policies. Simulation results indicate that the proposed methods outperform the existing scheduling techniques by maximizing the system throughput without harming the user fairness performance.

Publisher

IGI Global

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Guaranteeing User Rates With Reinforcement Learning in 5G Radio Access Networks;Research Anthology on Developing and Optimizing 5G Networks and the Impact on Society;2021

2. A Comparison of Reinforcement Learning Algorithms in Fairness-Oriented OFDMA Schedulers;Information;2019-10-14

3. Guaranteeing User Rates With Reinforcement Learning in 5G Radio Access Networks;Advances in Wireless Technologies and Telecommunication;2019

4. Machine Learning in Radio Resource Scheduling;Advances in Wireless Technologies and Telecommunication;2019

5. Multiuser Diversity OFDMA using Power Priority Selection and Adaptive Clipping;International Journal of Distributed Systems and Technologies;2014-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3