A Comparison of Reinforcement Learning Algorithms in Fairness-Oriented OFDMA Schedulers

Author:

Comsa ORCID,Zhang ,Aydin ORCID,Kuonen ,Trestian ,Ghinea ORCID

Abstract

Due to large-scale control problems in 5G access networks, the complexity of radioresource management is expected to increase significantly. Reinforcement learning is seen as apromising solution that can enable intelligent decision-making and reduce the complexity of differentoptimization problems for radio resource management. The packet scheduler is an importantentity of radio resource management that allocates users’ data packets in the frequency domainaccording to the implemented scheduling rule. In this context, by making use of reinforcementlearning, we could actually determine, in each state, the most suitable scheduling rule to be employedthat could improve the quality of service provisioning. In this paper, we propose a reinforcementlearning-based framework to solve scheduling problems with the main focus on meeting the userfairness requirements. This framework makes use of feed forward neural networks to map momentarystates to proper parameterization decisions for the proportional fair scheduler. The simulation resultsshow that our reinforcement learning framework outperforms the conventional adaptive schedulersoriented on fairness objective. Discussions are also raised to determine the best reinforcement learningalgorithm to be implemented in the proposed framework based on various scheduler settings.

Publisher

MDPI AG

Subject

Information Systems

Reference47 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3