Comparison of Machine Learning Techniques for Software Quality Prediction

Author:

Goyal Somya1,Bhatia Pradeep Kumar2

Affiliation:

1. Manipal University Jaipur, Jaipur, India & Guru Jambheshwar University of Science & Technology, Hisar, India

2. Guru Jambheshwar University of Science & Technology, Hisar, India

Abstract

Software quality prediction is one the most challenging tasks in the development and maintenance of software. Machine learning (ML) is widely being incorporated for the prediction of the quality of a final product in the early development stages of the software development life cycle (SDLC). An ML prediction model uses software metrics and faulty data from previous projects to detect high-risk modules for future projects, so that the testing efforts can be targeted to those specific ‘risky' modules. Hence, ML-based predictors contribute to the detection of development anomalies early and inexpensively and ensure the timely delivery of a successful, failure-free and supreme quality software product within budget. This article has a comparison of 30 software quality prediction models (5 technique * 6 dataset) built on five ML techniques: artificial neural network (ANN); support vector machine (SVMs); Decision Tree (DTs); k-Nearest Neighbor (KNN); and Naïve Bayes Classifiers (NBC), using six datasets: CM1, KC1, KC2, PC1, JM1, and a combined one. These models exploit the predictive power of static code metrics, McCabe complexity metrics, for quality prediction. All thirty predictors are compared using a receiver operator curve (ROC), area under the curve (AUC), and accuracy as performance evaluation criteria. The results show that the ANN technique for software quality prediction is promising for accurate quality prediction irrespective of the dataset used.

Publisher

IGI Global

Subject

Artificial Intelligence,Management of Technology and Innovation,Information Systems and Management,Organizational Behavior and Human Resource Management,Strategy and Management,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3