Disruption Management in Urban Rail Transit System

Author:

Hassannayebi Erfan1,Sajedinejad Arman2,Mardani Soheil1

Affiliation:

1. Tarbiat Modares University, Iran

2. Research Institute for Information Science and Technology (IRANDOC), Iran

Abstract

The process of disruption management in rail transit systems faces challenging issues such as the unpredictable occurrence time, the consequences and the uncertain duration of disturbance or recovery time. The objective of this chapter is to adopt a discrete-event object-oriented simulation system, which applies the optimization algorithms in order to compensate the system performance after disruption. A line blockage disruption is investigated. The uncertainty associated with blockage recovery time is considered with several probabilistic scenarios. The disruption management model presented here combines short-turning and station-skipping control strategies with the objective to decrease the average passengers' waiting time. A variable neighborhood search (VNS) algorithm is proposed to minimize the average waiting time. The computational experiments on real instances derived from Tehran Metropolitan Railway are applied in the proposed model and the advantages of the implementing the optimized single and combined short-turning and stop-skipping strategies are listed.

Publisher

IGI Global

Reference57 articles.

1. Recovery of disruptions in rapid transit networks

2. A short-turning policy for the management of demand disruptions in rapid transit systems.;D.Canca;Annals of Operations Research,2014

3. Optimal Train Reallocation Strategies under Service Disruptions

4. Estimation method for a skip-stop operation strategy for urban rail transit in China

5. Carbone, A., Papa, F., & Sacco, N. (2012). An Optimization Approach for Delay Recovery in Urban Metro Transportation Systems.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3