Machine Learning Optimization Techniques for 3D IC Physical Design

Author:

Gracia Nirmala Rani D. 1,Shanthi J.1,Rajaram S.1

Affiliation:

1. Thiagarajar College of Engineering, India

Abstract

The importance and growth of the digital IC have become more popular because of parameters such as small feature size, high speed, low cost, less power consumption, and temperature. There have been various techniques and methodologies developed so far using different optimization algorithms and data structures based on the dimensions of the IC to improve these parameters. All these existing algorithms illustrate explicit advantages in optimizing the chip area, maximum temperature of the chip, and wire length. Though there are some advantages in these traditional algorithms, there are few demerits such as execution time, integration, and computational complexity due to the necessity of handling large number of data. Machine learning techniques produce vibrant results in such fields where it is required to handle big data in order to optimize the scaling parameters of IC design. The objective of this chapter is to give an elaborate idea of applying machine learning techniques using Bayesian theorem to create automation tool for VLSI 3D IC design steps.

Publisher

IGI Global

Reference33 articles.

1. A placement optimization technique for 3D IC

2. Chang, Y. C., Chang, Y. W., Wu, G. M., & Wu, S. W. (2000). B*tree: a new representations for non slicing floorplans. Proc. ACM/IEEE Design Automation Conf., 458–463.

3. Chen, Liu, Zhu, & Zhu. (2017). An adaptive hybrid memetic algorithm for thermal-aware non-slicing VLSI floor planning. Integration, 58, 245–252.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-Based Hardware Security Methods for Internet-of-Things Applications;Frontiers of Quality Electronic Design (QED);2022-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3