Affiliation:
1. Indian Institute of Technology Delhi, India
2. Dr. B. R. Ambedkar National Institute of Technology, India
3. Panjab University, India
Abstract
Multilevel thresholding is segmenting the image into several distinct regions. Medical data like magnetic resonance images (MRI) contain important clinical information that is crucial for diagnosis. Hence, automatic segregation of tissue constituents is of key interest to clinician. In the chapter, standard entropies (i.e., Kapur and Tsallis) are explored for thresholding of brain MR images. The optimal thresholds are obtained by the maximization of these entropies using the particle swarm optimization (PSO) and the BAT optimization approach. The techniques are implemented for the segregation of various tissue constituents (i.e., cerebral spinal fluid [CSF], white matter [WM], and gray matter [GM]) from simulated images obtained from the brain web database. The efficacy of the thresholding technique is evaluated by the Dice coefficient (Dice). The results demonstrate that Tsallis' entropy is superior to the Kapur's entropy for the segmentation CSF and WM. Moreover, entropy maximization using BAT algorithm attains a higher Dice in contrast to PSO.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献