Abstract
PurposeImage segmentation is one of the most essential tasks in image processing applications. It is a valuable tool in many oriented applications such as health-care systems, pattern recognition, traffic control, surveillance systems, etc. However, an accurate segmentation is a critical task since finding a correct model that fits a different type of image processing application is a persistent problem. This paper develops a novel segmentation model that aims to be a unified model using any kind of image processing application. The proposed precise and parallel segmentation model (PPSM) combines the three benchmark distribution thresholding techniques to estimate an optimum threshold value that leads to optimum extraction of the segmented region: Gaussian, lognormal and gamma distributions. Moreover, a parallel boosting algorithm is proposed to improve the performance of the developed segmentation algorithm and minimize its computational cost. To evaluate the effectiveness of the proposed PPSM, different benchmark data sets for image segmentation are used such as Planet Hunters 2 (PH2), the International Skin Imaging Collaboration (ISIC), Microsoft Research in Cambridge (MSRC), the Berkley Segmentation Benchmark Data set (BSDS) and Common Objects in COntext (COCO). The obtained results indicate the efficacy of the proposed model in achieving high accuracy with significant processing time reduction compared to other segmentation models and using different types and fields of benchmarking data sets.Design/methodology/approachThe proposed PPSM combines the three benchmark distribution thresholding techniques to estimate an optimum threshold value that leads to optimum extraction of the segmented region: Gaussian, lognormal and gamma distributions.FindingsOn the basis of the achieved results, it can be observed that the proposed PPSM–minimum cross-entropy thresholding (PPSM–MCET)-based segmentation model is a robust, accurate and highly consistent method with high-performance ability.Originality/valueA novel hybrid segmentation model is constructed exploiting a combination of Gaussian, gamma and lognormal distributions using MCET. Moreover, and to provide an accurate and high-performance thresholding with minimum computational cost, the proposed PPSM uses a parallel processing method to minimize the computational effort in MCET computing. The proposed model might be used as a valuable tool in many oriented applications such as health-care systems, pattern recognition, traffic control, surveillance systems, etc.
Subject
Computer Science Applications,Information Systems,Software
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献