Optimized Data Mining Techniques for Outlier Detection, Removal, and Management Zone Delineation for Yield Prediction

Author:

Roopa G. M. 1,Arun Kumar G. H. 1,Naveen Kumar K. R. 1,Nirmala C. R. 1

Affiliation:

1. Bapuji Institute of Engineering and Technology, India

Abstract

Enormous agricultural data collected using sensors for crop management decisions on spatial data with soil parameters like N, P, K, pH, and EC enhances crop growth for soil type. Spatial data play vital role in DSS, but inconsistent values leads to improper inferences. From EDA, few observations involve outliers that deviates crop management assessments. In spatial data context, outliers are the observations whose non-spatial attributes are distinct from other observations. Thus, treating an entire field as uniform area is trivial which influence the farmers to use expensive fertilizers. Iterative-R algorithm is applied for outlier detection to reduce the masking/swamping effects. Outlier-free data defines interpretable field patterns to satisfy statistical assumptions. For heterogeneous farms, the aim is to identify sub-fields and percentage of fertilizers. MZD achieved by interpolation technique predicts the unobserved values by comparing with its known neighbor-points. MZD suggests the farmers with better knowledge of soil fertility, field variability, and fertilizer applying rates.

Publisher

IGI Global

Reference24 articles.

1. Biswas & Si. (2013). Model Averaging for Semi-variogram Model Parameters. Advances in Agrophysical Research, 81-94.

2. Spatial outlier detection based on iterative-self-organizing learning model.;Neurocomputing,2013

3. Depth-Based Outlier Detection Algorithm. M.;M.Cárdenas-Montes;Springer International Publishing Switzerland.,2014

4. Subfield management class delineation using cluster analysis from spatial principal components of soil variables

5. Dik, Jebari, & Bouroumi. (2014). Similarity-based approach for outlier detection. International Journal of Computer Science, 11, 41-45.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Variant of Northern Bald Ibis Algorithm for Unmasking Outliers;International Journal of Software Science and Computational Intelligence;2020-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3