Affiliation:
1. Acharya Nagarjuna University, Guntur, India
Abstract
Clustering, one of the most attractive data analysis concepts in data mining, are frequently used by many researchers for analysing data of variety of real-world applications. It is stated in the literature that traditional clustering methods are trapped in local optima and fail to obtain optimal clusters. This research work gives the design and development of an advanced optimum clustering method for unmasking abnormal entries in the clinical dataset. The basis is the NOA, a recently proposed algorithm, driven by mimicking the migration pattern of Northern Bald Ibis (Threskiornithidae) birds. First, we developed the variant of the standard NOA by replacing C1 and C2 parameters of NOA with chaotic maps turning it into the VNOA. Later, we utilized the VNOA in the design of a new and advanced clustering method. VNOA is first benchmarked on a 7 unimodal (F1–F7) and 6 multimodal (F8–F13) mathematical functions. We tested the numerical complexity of proposed VNOA-based clustering methods on a clinical dataset. We then compared the obtained graphical and statistical results with well-known algorithms. The superiority of the presented clustering method is evidenced from the simulations and comparisons.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献