Problem Solving at the Edge of Disciplines

Author:

Connor Andrew1,Sosa Ricardo1,Jackson Anna G.1,Marks Stefan1

Affiliation:

1. Auckland University of Technology, New Zealand

Abstract

This chapter outlines a new perspective on disciplinary collaboration that draws inspiration from ecology that observes that the edges where ecosystems meet tend to have greater biodiversity than the ecosystems themselves. This thinking is applied to a typical University Faculty consisting of three Schools to show that the potential for collaboration across disciplinary boundaries is rich. The chapter proposes a new degree structure that embeds problem solving skills as core to the production of “pi-shaped” people, defined as those that have disciplinary depth in two areas and the ability to work outside of their core area. In this regard, problem solving is consider an area where a student can achieve depth of knowledge. The degree is designed such that it produces an exchange of students across disciplinary boundaries and also structured so that it takes students on a journey through different models of disciplinary collaboration. The degree is seen as a key enabled of achieving so called “Mode 2” knowledge production.

Publisher

IGI Global

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3