Abstract
A number of methodologies are available in the field of data mining, machine learning, and pattern recognition for solving classification problems. In past few years, retrieval and extraction of information from a large amount of data is growing rapidly. Classification is nothing but a stepwise process of prediction of responses using some existing data. Some of the existing prediction algorithms are support vector machine and k-nearest neighbor. But there is always some drawback of each algorithm depending upon the type of data. To reduce misclassification, a new methodology of support vector machine is introduced. Instead of having the hyperplane exactly in middle, the position of hyperplane is to be change per number of data points of class available near the hyperplane. To optimize the time consumption for computation of classification algorithm, some multi-core architecture is used to compute more than one independent module simultaneously. All this results in reduction in misclassification and faster computation of class for data point.
Reference15 articles.
1. A Survey on Feature Selection Techniques and Classification Algorithms for Efficient Text Classification. (2016). International Journal of Science and Research.
2. Text Documents Classification Using Word Intersections
3. Unsupervised Learning. Appeared;P.Dayan;The MIT Encyclopedia Of The Cognitive Sciences
4. Hybrid classification model of correlation-based feature selection and support vector machine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献