Modified Support Vector Machine Algorithm to Reduce Misclassification and Optimizing Time Complexity

Author:

Doshi Aditya Ashvin1,Sevugan Prabu1,Swarnalatha P.1

Affiliation:

1. VIT University, India

Abstract

A number of methodologies are available in the field of data mining, machine learning, and pattern recognition for solving classification problems. In past few years, retrieval and extraction of information from a large amount of data is growing rapidly. Classification is nothing but a stepwise process of prediction of responses using some existing data. Some of the existing prediction algorithms are support vector machine and k-nearest neighbor. But there is always some drawback of each algorithm depending upon the type of data. To reduce misclassification, a new methodology of support vector machine is introduced. Instead of having the hyperplane exactly in middle, the position of hyperplane is to be change per number of data points of class available near the hyperplane. To optimize the time consumption for computation of classification algorithm, some multi-core architecture is used to compute more than one independent module simultaneously. All this results in reduction in misclassification and faster computation of class for data point.

Publisher

IGI Global

Reference15 articles.

1. A Survey on Feature Selection Techniques and Classification Algorithms for Efficient Text Classification. (2016). International Journal of Science and Research.

2. Text Documents Classification Using Word Intersections

3. Unsupervised Learning. Appeared;P.Dayan;The MIT Encyclopedia Of The Cognitive Sciences

4. Hybrid classification model of correlation-based feature selection and support vector machine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3