AI-Based Multi Sensor Fusion for Smart Decision Making: A Bi-Functional System for Single Sensor Evaluation in a Classification Task

Author:

Zoghlami FeryelORCID,Kaden MarikaORCID,Villmann ThomasORCID,Schneider Germar,Heinrich Harald

Abstract

Sensor fusion has gained a great deal of attention in recent years. It is used as an application tool in many different fields, especially the semiconductor, automotive, and medical industries. However, this field of research, regardless of the field of application, still presents different challenges concerning the choice of the sensors to be combined and the fusion architecture to be developed. To decrease application costs and engineering efforts, it is very important to analyze the sensors’ data beforehand once the application target is defined. This pre-analysis is a basic step to establish a working environment with fewer misclassification cases and high safety. One promising approach to do so is to analyze the system using deep neural networks. The disadvantages of this approach are mainly the required huge storage capacity, the big training effort, and that these networks are difficult to interpret. In this paper, we focus on developing a smart and interpretable bi-functional artificial intelligence (AI) system, which has to discriminate the combined data regarding predefined classes. Furthermore, the system can evaluate the single source signals used in the classification task. The evaluation here covers each sensor contribution and robustness. More precisely, we train a smart and interpretable prototype-based neural network, which learns automatically to weight the influence of the sensors for the classification decision. Moreover, the prototype-based classifier is equipped with a reject option to measure classification certainty. To validate our approach’s efficiency, we refer to different industrial sensor fusion applications.

Funder

ECSEL Joint Undertaking

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. Industry 4.0 Concept: Background and Overview

2. Sensors 4.0 – smart sensors and measurement technology enable Industry 4.0

3. Sensor data quality: a systematic review

4. KDnuggets—Applying Deep Learning to Real-World Problemshttps://www.kdnuggets.com/2017/06/applying-deep-learning-real-world-problems.html

5. Effects of misclassification costs on mapping mineral prospectivity

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3