An Expert System for Predicting ERP Post-Implementation Benefits Using Artificial Neural Network

Author:

Ravasan Ahad Zare1,Rouhani Saeed2

Affiliation:

1. Allameh Tabataba'i University, Iran

2. Tehran University, Iran

Abstract

Implementing Enterprise Resource Planning systems (ERPs) is a complex and costly project which usually delivers only a few of expected benefits. Obtaining the expected benefits of ERPs is impressed by a variety of factors and variables which is related to an organization or project environment. In this paper, the idea of predicting ERP post-implementation benefits based on the organizational profiles and factors has been discussed. Regarding the need to form the expectations of organizations about ERP, an expert system is developed by using Artificial Neural Network (ANN) method to articulate the relationships between some organizational factors and ERP's achieved benefits. The expert system's role is in the preparation to capture the data from the new enterprises wishes to implement ERP and predict likely benefits might be achieved from the system. For this end, factors of organizational profiles (such as industry type, size, structure, and so on) are recognized and a feed-forward architecture and Levenberg-Marquardt (trainlm) neural network model is designed, trained and validated with 171 surveyed data of Middle-East located enterprises experienced ERP. The trained ANN embedded in developed expert system predicts with the average correlation coefficients of 0.745, which is respectively high and proves the idea of dependency of ERP post-implementation benefits on the organizational profiles. Besides, total correct classification rate of 0.701 shows good prediction power which can help firms in predicting ERP benefits before system implementation.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural Network Development for Quality Analysis of ERP Systems;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3