CNN-Based Deep Learning Technique for the Brain Tumor Identification and Classification in MRI Images

Author:

Mandle Anil Kumar1,Sahu Satya Prakash1ORCID,Gupta Govind P.1ORCID

Affiliation:

1. National Institute of Technology, Raipur, India

Abstract

A brain tumor is an abnormal development of cells in the brain that are either benign or malignant. Magnetic resonance imaging (MRI) is used to identify tumors. Manual evaluation of brain tumors from MRI images by a radiologist is a challenging task. Hence, this paper proposes VGG-19 Convolutional Neural Networks (CNN)-based deep learning model for the classification of brain tumors. Initially, in the proposed model, contrast stretching technique is employed for noises removal. Next, a deep neural network is employed for rich feature extract. Further, these learning features are combined with classifier models of CNN for training and validation. performance analysis of the proposed methodology and experiments have been carried out using publicly available MRI images in Figshare dataset of 3064 slices from 233 subjects. The proposed model has achieved 99.83% accuracy. Moreover, the proposed model obtained precision 96.32%, 98.26%, and 98.56%, recall of 97.82%, 98.62%, 98.87%, and specificity of 98.72%, 99.51%, and 99.43% for the Glioma, Meningioma, and Pituitary tumors respectively.

Publisher

IGI Global

Subject

Pharmacology (medical)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Detection of Chronic Atrophic Gastritis Using High-Resolution Endoscopy and Semantic Web;International Journal on Semantic Web and Information Systems;2024-08-23

2. Semantic Web Techniques for Extracting and Analyzing of Cropland Abandonment in Hilly Areas;International Journal on Semantic Web and Information Systems;2024-07-29

3. Unmanned Aerial Vehicle-Based Animal Detection via Hybrid CNN and LSTM Model;ICC 2024 - IEEE International Conference on Communications;2024-06-09

4. A Review of Semantic Medical Image Segmentation Based on Different Paradigms;International Journal on Semantic Web and Information Systems;2024-06-06

5. Reversible-Prior-Based Spectral-Spatial Transformer for Efficient Hyperspectral Image Reconstruction;International Journal on Semantic Web and Information Systems;2024-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3