A State-of-the-Art Survey on Context-Aware Recommender Systems and Applications

Author:

Le Quang-Hung1,Vu Son-Lam1,Nguyen Thi-Kim-Phuong1,Le Thi-Xinh1

Affiliation:

1. Quy Nhon University, Vietnam

Abstract

In the digital transformation era, increasingly more individuals and organizations use or create services in digital spaces. Many business transactions have been moving from the offline to online mode. For example, sellers intend to introduce their products on e-commerce platforms rather than display them on store shelves as in traditional business. Although this new format business has advantages, such as more space for product displays, more efficient searches for a specific item, and providing a good tool for both buyers and sellers to manage their products, it is also accompanied by the obviously important problem that users are confused when choosing an appropriate item due to a large amount of information. For this reason, the need for a recommendation system appears. Informally, a recommender system is similar to an information filtering system that helps identify a set of items that best satisfy users' demands based on their preference profiles. The integration of contextual information (e.g., location, weather conditions, and user's mood) into recommender systems to improve their performance has recently received considerable attention in the research literature. However, incorporating such contextual information into recommendation models is a challenging task because of the increase in both the dimensionality and sparsity of the model. Different approaches with their own advantages and disadvantages have been proposed. This paper provides a comprehensive survey on context-aware recommender systems in recent years. In particular, the authors pay more attention to journal and conference proceedings papers published from 2016 to 2020. In addition, this paper also presents open issues for context-aware recommender systems and discuss promising directions for future research.

Publisher

IGI Global

Subject

Artificial Intelligence,Management of Technology and Innovation,Information Systems and Management,Organizational Behavior and Human Resource Management,Strategy and Management,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Deep Learning Based Approach for Context-Aware Multi-Criteria Recommender Systems;Computer Systems Science and Engineering;2023

2. Context-Aware Recommender Systems: Aggregation-Based Dimensionality Reduction;Lecture Notes in Business Information Processing;2023

3. An E-Commerce Product Recommendation Method Based on Visual Search and Customer Satisfaction;International Journal of Knowledge and Systems Science;2022-09-09

4. A Novel Triangle Count-Based Influence Maximization Method on Social Networks;International Journal of Knowledge and Systems Science;2022-02-24

5. Contextual Recommender Systems in Business from Models to Experiments;Machine Learning and Data Analytics for Solving Business Problems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3