An E-Commerce Product Recommendation Method Based on Visual Search and Customer Satisfaction

Author:

Zhong Houji1,Wang Yuanyuan1ORCID,Yue Wuyi2

Affiliation:

1. Yamaguchi University, Japan

2. Konan University, Japan

Abstract

Recently, extensive attention from researchers has been paid to users referring to product review comments when choosing products while shopping online. These shoppers are also more frequently demanding a visual search facility to identify similar or identical products based on images they input. In this paper, the authors propose a product recommendation method to support a visual product search that combines the similarities of both visual and textual information to recommend products with a high level of satisfaction. The authors first utilize the image-based recognition method to calculate the similarities between user-inputted images and product images based on their SIFT features and the surrounding text. Next, to select satisfying products, the authors perform sentiment analysis on product reviews and combine this with users' repeat purchase behavior to recommend products that have a high level of satisfaction rating. Finally, the authors evaluate and discuss the proposed method using real e-commerce data.

Publisher

IGI Global

Subject

Artificial Intelligence,Management of Technology and Innovation,Information Systems and Management,Organizational Behavior and Human Resource Management,Strategy and Management,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3