High Performance CGM-based Parallel Algorithms for the Optimal Binary Search Tree Problem

Author:

Tchendji Vianney Kengne1,Myoupo Jean Frederic2,Dequen Gilles2

Affiliation:

1. Department of Mathematics and Computer Science, University of Dschang, Dschang, Cameroon

2. University of Picardie Jules Verne, Amiens, France

Abstract

In this paper, the authors highlight the existence of close relations between the execution time, efficiency and number of communication rounds in a family of CGM-based parallel algorithms for the optimal binary search tree problem (OBST). In this case, these three parameters cannot be simultaneously improved. The family of CGM (Coarse Grained Multicomputer) algorithms they derive is based on Knuth's sequential solution running in time and space, where n is the size of the problem. These CGM algorithms use p processors, each with local memory. In general, the authors show that each algorithms runs in with communications rounds. is the granularity of their model, and is a parameter that depends on and . The special case of yields a load-balanced CGM-based parallel algorithm with communication rounds and execution steps. Alternately, if , they obtain another algorithm with better execution time, say , the absence of any load-balancing and communication rounds, i.e., not better than the first algorithm. The authors show that the granularity has a crucial role in the different techniques they use to partition the problem to solve and study the impact of each scheduling algorithm. To the best of their knowledge, this is the first unified method to derive a set of parameter-dependent CGM-based parallel algorithms for the OBST problem.

Publisher

IGI Global

Subject

Computer Networks and Communications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3