Statically Optimal Binary Search Tree Computation Using Non-Serial Polyadic Dynamic Programming on GPU's

Author:

Wani Mohsin Altaf1,Ahmad Manzoor2ORCID

Affiliation:

1. University of Kashmir, Srinagar, India

2. University of Kashmir,Srinagar, India

Abstract

Modern GPUs perform computation at a very high rate when compared to CPUs; as a result, they are increasingly used for general purpose parallel computation. Determining if a statically optimal binary search tree is an optimization problem to find the optimal arrangement of nodes in a binary search tree so that average search time is minimized. Knuth's modification to the dynamic programming algorithm improves the time complexity to O(n2). We develop a multiple GPU-based implementation of this algorithm using different approaches. Using suitable GPU implementation for a given workload provides a speedup of up to four times over other GPU based implementations. We are able to achieve a speedup factor of 409 on older GTX 570 and a speedup factor of 745 is achieved on a more modern GTX 1060 when compared to a conventional single threaded CPU based implementation.

Publisher

IGI Global

Subject

Computer Networks and Communications

Reference27 articles.

1. NVidia Corp. (2011). CUDA programming guide version 4.1, Retrieved from http://docs.nvidia.com/cuda/cuda-c-programming-guide/

2. NVidia Corp. (2011). CUDA C Best Practices Guide version 4.1. Retrieved from http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

3. High Performance CGM-based Parallel Algorithms for the optimal binary search tree.;V. K.Tchendji;International Journal of Grid and High Performance Computing,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Four-splitting based coarse-grained multicomputer parallel algorithm for the optimal binary search tree problem;International Journal of Parallel, Emergent and Distributed Systems;2022-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3