Hybrid Filtering Recommendation System in an Educational Context

Author:

Baidada Mohammed1ORCID,Mansouri Khalifa2,Poirier Franck3

Affiliation:

1. ISGA Rabat, Morocco

2. Hassan II University, Morocco

3. Bretagne Sud University, France

Abstract

In education, the needs of learners are different in the majority of the time, as each has specificities in terms of preferences, performance and goals. Recommendation systems have proven to be an effective way to ensure this learning personalization. Already used and tested in other areas such as e-commerce, their adaptation to the educational context has led to several research studies that have tried to find the best approaches with the best expected results. This article suggests that a hybridization of recommendation systems filtering methods can improve the quality of recommendations. An experiment was conducted to test an approach that combines content-based filtering and collaborative filtering. The results proved to be convincing.

Publisher

IGI Global

Subject

Computer Science Applications,Education

Reference33 articles.

1. Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method

2. Recommender system in collaborative learning environment using an influence diagram

3. Hybrid Recommendation Approach in Online Learning Environments

4. Cadre d'analyse de la personnalisation de l'apprentissage dans les cours en ligne ouverts et massifs (CLOM)

5. Berkani, L., Nouali, O., & Chikh, A. (2013). Recommandation personnalisée des ressources dans une communauté de pratique de e-learning. Une approche à base de filtrage hybride. INFORSID 2013: Proceeding of Informatique des organisations et systèmes d’information et de décision conference, 131-138.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3