Affiliation:
1. EEDIS Laboraory, Djillali Liabes University, Sidi Bel Abbes, Algeria
Abstract
Deep learning is one of the most commonly used techniques in computer-aided diagnosis systems. Their exploitation for histopathological image analysis is important because of the complex morphology of whole slide images. However, the main limitation of these methods is the restricted number of available medical images, which can lead to an overfitting problem. Many studies have suggested the use of static ensemble learning methods to address this issue. This article aims to propose a new dynamic ensemble deep learning method. First, it generates a set of models based on the transfer learning strategy from deep neural networks. Then, the relevant subset of models is selected by the particle swarm optimization algorithm and combined by voting or averaging methods. The proposed approach was tested on a histopathological dataset for colorectal cancer classification, based on seven types of CNNs. The method has achieved accurate results (94.52%) by the Resnet121 model and the voting strategy, which provides important insights into the efficiency of dynamic ensembling in deep learning.
Subject
Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献