Query Expansion Using Medical Information Extraction for Improving Information Retrieval in French Medical Domain

Author:

Ghoulam Aicha1,Barigou Fatiha1,Belalem Ghalem1ORCID,Meziane Farid2ORCID

Affiliation:

1. Department of Computer Science, University of Oran 1, Ahmed Ben Bella, Oran, Algeria

2. University of Salford, UK

Abstract

This article describes how many users' queries contain references to named entities, and this is particularly true in the medical field. Doctors express their information needs using medical entities as they are element rich with information that helps better target relevant documents. At the same time, many resources have been recognized as a large container of medical entities and relationships between them such as clinical reports; which are medical texts written by doctors. In this article, the authors present a query expansion method that uses medical entities and their semantic relations in the query context based on an external resource in OWL. The goal of this method is to evaluate the effectiveness of an information retrieval system to support doctors in accessing easily relevant information. Experiments on a collection of real clinical reports show that their approach reveals interesting improvements in precision, recall and MAP in medical information retrieval.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3