Research on Dual-Dimensional Entity Association-Based Question and Answering Technology for Smart Medicine

Author:

Zhai Pengjun1ORCID,Fang Yu1ORCID,Cui Xue1

Affiliation:

1. Department of Computer Science and Technology, Tongji University, Shanghai 200082, China

Abstract

With the development of the Internet of Things, intelligent medical devices and intelligent consultation platforms have been rapidly popularized, providing great convenience for medical treatment to patients and consultation to doctors. In the face of large-scale medical electronic information data, how to automatically and accurately learn professional knowledge and realize application is very important. The existing intelligent medical question answering models typically use query expansion to improve the accuracy of model matching answers but ignore the corresponding entity association between questions and answers, and the method of randomly generating negative samples cannot train the model to capture more semantic information. To solve these problems, a question answering method based on dual-dimensional entity association for intelligent medicine is proposed. This method learns semantics from the dual-dimension of question and answer respectively. In the question dimension, query extension words with strong relevance to query intention are obtained through entity association in the medical knowledge graph. In the answer dimension, answer sentences are segmented and sampled by employing a variety of similarity distances to generate negative samples in different ranges, provide different levels of correlation information between entities for model training, and then integrate the trained model to improve the accuracy and robustness of the question answering model. The experimental results show that the question answering model proposed in this paper has a good improvement in accuracy.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3