A Comment Aspect-Level User Preference Transfer Model for Cross-Domain Recommendations

Author:

Zhang Wumei1,Zhang Jianping1,Zhang Yongzhen1

Affiliation:

1. Zhejiang Tongji Vocational College of Technology, China

Abstract

Traditional cross-domain recommendation models make it difficult to deeply mine users' aspect-level preferences from comment information due to existing problems such as polysemy of comment text, sparse comment data, and user cold start. A Cross-Domain Recommender (CDR) model that integrates comment knowledge enhancement and aspect-level user preference transfer (C-KE-AUT) was proposed to address the above issues. Firstly, an aspect-level user preference extraction model was constructed by combining the RoBERTa word embedding model, high-level feature representation based on Transformer, and aspect-level attention-learning methods. Then, a user aspect-level preference cross-domain transfer model was constructed based on a two-stage generative adversarial network that can transfer the aspect-level interest preferences of users in the source domain to the target domain with sparse data. The experimental results on the Amazon 2018 comment dataset indicated that the recommendation performance of the proposed C-KE-AUT model was significantly superior to other advanced comparative models.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3