Mixed Autonomous/Teleoperation Control of Asymmetric Robotic Systems

Author:

Malysz Pawel1,Sirouspour Shahin1

Affiliation:

1. Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada

Abstract

This paper presents a unified framework for system design and control in human-in-the-loop asymmetric robotic systems. It introduces a highly general teleoperation system configuration involving any number of operators, haptic interfaces, and robots with possibly different degrees of mobility. The proposed framework allows for mixed teleoperation/autonomous control of user-defined subtasks by establishing position/force tracking as well as kinematic constraints among relevant teleoperation control frames. The control strategy is hierarchical comprising of a high-level teleoperation coordinating controller and low-level joint velocity controllers. The approach utilizes idempotent, generalized pseudoinverse and weighting matrices in order to achieve new performance objectives that are defined for such asymmetric semi-autonomous teleoperation systems. Three layers of velocity-based autonomous control at different priority levels with respect to human teleoperation are integrated into the framework. A detailed analysis of system performance and stability is presented. Experimental results with a single-master/dual-slave system configuration demonstrate an application of the proposed system design and control strategy.

Publisher

IGI Global

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3