Classification and Regression Trees

Author:

Gehrke Johannes1

Affiliation:

1. Cornell University, USA

Abstract

It is the goal of classification and regression to build a data mining model that can be used for prediction. To construct such a model, we are given a set of training records, each having several attributes. These attributes can either be numerical (for example, age or salary) or categorical (for example, profession or gender). There is one distinguished attribute, the dependent attribute; the other attributes are called predictor attributes. If the dependent attribute is categorical, the problem is a classification problem. If the dependent attribute is numerical, the problem is a regression problem. It is the goal of classification and regression to construct a data mining model that predicts the (unknown) value for a record where the value of the dependent attribute is unknown. (We call such a record an unlabeled record.) Classification and regression have a wide range of applications, including scientific experiments, medical diagnosis, fraud detection, credit approval, and target marketing (Hand, 1997). Many classification and regression models have been proposed in the literature, among the more popular models are neural networks, genetic algorithms, Bayesian methods, linear and log-linear models and other statistical methods, decision tables, and tree-structured models, the focus of this chapter (Breiman, Friedman, Olshen, & Stone, 1984). Tree-structured models, socalled decision trees, are easy to understand, they are non-parametric and thus do not rely on assumptions about the data distribution, and they have fast construction methods even for large training datasets (Lim, Loh, & Shih, 2000). Most data mining suites include tools for classification and regression tree construction (Goebel & Gruenwald, 1999).

Publisher

IGI Global

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Skin Cancer Classification Using Deep Learning;Lecture Notes in Electrical Engineering;2023

2. Semi-Supervised Learning with GANs for Melanoma Detection;2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS);2022-05-25

3. Artificial neural network in the discrimination of lung cancer based on infrared spectroscopy;PLOS ONE;2022-05-12

4. Fast Human Activity Recognition Based on a Massively Parallel Implementation of Random Forest;Intelligent Information and Database Systems;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3