Abstract
Given the increasing prevalence of lung cancer worldwide, an auxiliary diagnostic method is needed alongside the microscopic examination of biopsy samples, which is dependent on the skills and experience of pathologists. Thus, this study aimed to advance lung cancer diagnosis by developing five (5) artificial neural network (NN) models that can discriminate malignant from benign samples based on infrared spectral data of lung tumors (n= 122; 56 malignant, 66 benign). NNs were benchmarked with classical machine learning (CML) models. Stratified 10-fold cross-validation was performed to evaluate the NN models, and the performance metrics—area under the curve (AUC), accuracy (ACC) positive predictive value (PPV), negative predictive value (NPV), specificity rate (SR), and recall rate (RR)—were averaged for comparison. All NNs were able to outperform the CML models, however, support vector machine is relatively comparable to NNs. Among the NNs, CNN performed best with an AUC of 92.28% ± 7.36%, ACC of 98.45% ± 1.72%, PPV of 96.62% ± 2.30%, NPV of 90.50% ± 11.92%, SR of 96.01% ± 3.09%, and RR of 89.21% ± 12.93%. In conclusion, NNs can be potentially used as a computational tool in lung cancer diagnosis based on infrared spectroscopy of lung tissues.
Publisher
Public Library of Science (PLoS)
Reference95 articles.
1. Lung Fact Sheet;Globocan;Obs Glob do Câncer,2020
2. Lung cancer epidemiology: Contemporary and future challenges worldwide;AME Publishing Company;Annals of Translational Medicine,2016
3. Lung cancer: Diagnosis, treatment principles, and screening;KM Latimer;Am Fam Physician,2015
4. Lung cancer diagnostic algorithm;RM Huber;Lung Cancer,2012
5. Establishing the diagnosis of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American college of chest physicians evidence-based clinical practice guidelines;MP Rivera;Chest,2013
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献