Hardware Virtualization on Dynamically Reconfigurable Processors

Author:

Plessl Christian1,Platzner Marco1

Affiliation:

1. University of Paderborn, Germany

Abstract

Numerous research efforts in reconfigurable embedded processors have shown that augmenting a CPU core with a coarse-grained reconfigurable array for application-specific hardware acceleration can greatly increase performance and energy-efficiency. The traditional execution model for such reconfigurable co-processors however requires the accelerated function to fit onto the reconfigurable array as a whole, which restricts the applicability to rather small functions. In the authors’ research presented in this chapter, the authors have studied hardware virtualization approaches that overcome this restriction by leveraging dynamic reconfiguration. They present two different hardware virtualization methods, virtualized execution and temporal partitioning, and introduce the Zippy reconfigurable processor architecture that has been designed with specific hardware virtualization support. Further, the authors outline the corresponding hardware and software tool flows. Finally, the authors demonstrate the potential provided by hardware virtualization with two case studies and discuss directions for future research.

Publisher

IGI Global

Reference20 articles.

1. SimpleScalar: An infrastructure for computer system modeling.;T.Austin;IEEE Computer,2002

2. Baumgarte, V., May, F., Nückel, A., Vorbach, M., & Weinhardt, M. (2001). PACT XPP – a self-reconfigurable data processing architecture. In Proc. 1st Int. Conf. on Engineering of Reconfigurable Systems and Algorithms (ERSA), (pp. 64–70). Las Vegas, NV: CSREA Press.

3. Architecture and CAD for Deep-Submicron FPGAS

4. Reconfigurable computing

5. Placement and routing tools for the Triptych FPGA. IEEE Trans. on Very Large Scale Integration (VLSI);C.Ebeling;Systems,1995

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3