Affiliation:
1. Tallinn University of Technology, Estonia
Abstract
In the first part of the chapter, an introduction to the problem of logic level fault simulation is given together with the overview of existing fault simulation techniques. The remaining part of the chapter describes a new approach to fault simulation based on exact critical path tracing to conduct fault analysis in logic circuits. A circuit topology driven computational model is presented which allows not only to cope with complex structures of nested reconvergent fan-outs but also to carry out the fault reasoning for many test patterns concurrently. To achieve the speed-up of backtracing, the circuit is simulated on higher than traditional gate level. As components of the circuit network, fan-out free regions of maximum size are considered, and they are represented by structurally synthesized BDDs. The latter allow to reduce the number of internal variables in the computation model, and therefore to process the whole circuit faster than on the flat gate-level. The method is explained first, for the stuck-at fault model, and then generalized for an extended class of functional fault model covering the conditional stuck-at and transition faults. The method can be used for simulating permanent faults in combinational circuits, and transient or intermittent faults both in combinational and sequential circuits with the goal of selecting malicious faults for injecting into fault tolerant systems to evaluate their dependability. Experimental results are included to give an idea how efficiently the method works with different fault classes.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献