High-Speed Logic Level Fault Simulation

Author:

Ubar Raimund1,Devadze Sergei1

Affiliation:

1. Tallinn University of Technology, Estonia

Abstract

In the first part of the chapter, an introduction to the problem of logic level fault simulation is given together with the overview of existing fault simulation techniques. The remaining part of the chapter describes a new approach to fault simulation based on exact critical path tracing to conduct fault analysis in logic circuits. A circuit topology driven computational model is presented which allows not only to cope with complex structures of nested reconvergent fan-outs but also to carry out the fault reasoning for many test patterns concurrently. To achieve the speed-up of backtracing, the circuit is simulated on higher than traditional gate level. As components of the circuit network, fan-out free regions of maximum size are considered, and they are represented by structurally synthesized BDDs. The latter allow to reduce the number of internal variables in the computation model, and therefore to process the whole circuit faster than on the flat gate-level. The method is explained first, for the stuck-at fault model, and then generalized for an extended class of functional fault model covering the conditional stuck-at and transition faults. The method can be used for simulating permanent faults in combinational circuits, and transient or intermittent faults both in combinational and sequential circuits with the goal of selecting malicious faults for injecting into fault tolerant systems to evaluate their dependability. Experimental results are included to give an idea how efficiently the method works with different fault classes.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3