Multi-Objective Materialized View Selection Using Improved Strength Pareto Evolutionary Algorithm

Author:

Prakash Jay1ORCID,Kumar T. V. Vijay1

Affiliation:

1. School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India

Abstract

A data warehouse system uses materialized views extensively in order to speedily tackle analytical queries. Considering that all possible views cannot be materialized due to maintenance cost and storage constraints, the selection of an appropriate set of views to materialize that achieve an optimal trade-off among query response time, maintenance cost, and the storage constraint becomes an essential necessity. The selection of such an appropriate set of views for materialization is referred to as the materialized views selection problem, which is an NP-Complete problem. In the last two decades, several new selection approaches, based on heuristics, have been proposed. Most of these have used a single objective or weighted sum approach to address the various constraints. In this article, an attempt has been made to address the bi-objective materialized view selection problem, where the objective is to minimize the view evaluation cost of materialized views and the view evaluation cost of the non-materialized views, using the Improved Strength Pareto Evolutionary Algorithm. The experimental results show that the proposed multi-objective view selection algorithm is able to select the Top-K views that achieves a reasonable trade-off between the two objectives. Materializing these selected views would reduce the query response times for analytical queries and thereby facilitates the decision-making process.

Publisher

IGI Global

Subject

General Medicine

Reference84 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Hybrid Metaheuristic Framework for Materialized View Selection in Data Warehouse Environments;International Journal of Cooperative Information Systems;2023-08-29

2. Multi‐objective materialized view selection using flamingo search optimization algorithm;Software: Practice and Experience;2022-12-02

3. Multi-Objective Optimization Design System for Rural Style Reconstruction Based on Pareto Evolutionary Algorithm;2022 IEEE 2nd International Conference on Mobile Networks and Wireless Communications (ICMNWC);2022-12-02

4. Multi-Objective Big Data View Materialization Using NSGA-III;International Journal of Decision Support System Technology;2022-10-06

5. Multi-Objective Big Data View Materialization Using Improved Strength Pareto Evolutionary Algorithm;Journal of Information Technology Research;2022-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3