A Temporal Multidimensional Model and OLAP Operators

Author:

Ahmed Waqas1,Zimányi Esteban2ORCID,Vaisman Alejandro Ariel3ORCID,Wrembel Robert4ORCID

Affiliation:

1. CODE WIT, Université Libre de Bruxelles, Belgium

2. CODE WIT, Université Libre de Bruxelles, Brussels, Belgium

3. Department of Information Engineering, Instituto Tecnológico de Buenos Aires, Argentina

4. Faculty of Computing and Telecommunications, Poznan University of Technology, Poznan, Poland

Abstract

Usually, data in data warehouses (DWs) are stored using the notion of the multidimensional (MD) model. Often, DWs change in content and structure due to several reasons, like, for instance, changes in a business scenario or technology. For accurate decision-making, a DW model must allow storing and analyzing time-varying data. This paper addresses the problem of keeping track of the history of the data in a DW. For this, first, a formalization of the traditional MD model is proposed and then extended as a generalized temporal MD model. The model comes equipped with a collection of typical online analytical processing (OLAP) operations with temporal semantics, which is formalized for the four classic operations, namely roll-up, dice, project, and drill-across. Finally, the mapping from the generalized temporal model into a relational schema is presented together with an implementation of the temporal OLAP operations in standard SQL.

Publisher

IGI Global

Subject

Hardware and Architecture,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Temporal and Flexible Data Warehouses;Communications in Computer and Information Science;2024

2. Multi-dimensional Data Optimal Classification Algorithm for Quality Evaluation of Distance Teaching in Universities;Mobile Networks and Applications;2023-08-19

3. What’s New in Temporal Databases?;Advances in Databases and Information Systems;2022

4. Automating IoT Data Ingestion Enabling Visual Representation;Sensors;2021-12-17

5. Schema Evolution in Multiversion Data Warehouses;International Journal of Data Warehousing and Mining;2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3