Affiliation:
1. CODE WIT, Université Libre de Bruxelles, Belgium
2. Department of Information Engineering, Instituto Tecnológico de Buenos Aires, Argentina
3. Poznan University of Technology, Poland
Abstract
Data warehouses (DWs) evolve in both their content and schema due to changes of user requirements, business processes, or external sources to name a few. Although multiple approaches using temporal and/or multiversion DWs have been proposed to handle these changes, an efficient solution for this problem is still lacking. The authors' approach is to separate concerns and use temporal DWs to deal with content changes, and multiversion DWs to deal with schema changes. To address the former, previously, they have proposed a temporal multidimensional (MD) model. In this paper, they propose a multiversion MD model for schema evolution to tackle the latter problem. The two models complement each other and allow managing both content and schema evolution. In this paper, the semantics of schema modification operators (SMOs) to derive various schema versions are given. It is also shown how online analytical processing (OLAP) operations like roll-up work on the model. Finally, the mapping from the multiversion MD model to a relational schema is given along with OLAP operations in standard SQL.
Subject
Hardware and Architecture,Software