Affiliation:
1. Department of Computer Science and Engineering, Lovely Professional University, Phagwara, India
2. Department of Computer Applications, Lovely Professional University, Phagwara, India
Abstract
Talking about organ failure and people immediately recall kidney diseases. On the contrary, there is no such alertness about liver diseases and its failure despite the fact that this disease is one of the leading causes of mortality worldwide. Therefore, an effective diagnosis and in time treatment of patients is paramount. This study accordingly aims to construct an intelligent diagnosis system which integrates principle component analysis (PCA) and k-nearest neighbor (KNN) methods to examine the liver patient dataset. The model works with the combination of feature extraction and classification performed by PCA and KNN respectively. Prediction results of the proposed system are compared using statistical parameters that include accuracy, sensitivity, specificity, positive predictive value and negative predictive value. In addition to higher accuracy rates, the model also attained remarkable sensitivity and specificity, which were a challenging task given an uneven variance among attribute values in the dataset.
Subject
Information Systems and Management,Information Systems,Medicine (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献