A Semantic-Embedding Model-Driven Seq2Seq Method for Domain-Oriented Entity Linking on Resource-Restricted Devices

Author:

Inan *Emrah1,Dikenelli Oguz2

Affiliation:

1. National Centre for Text Mining, Department of Computer Science, University of Manchester, UK

2. Department of Computer Engineering, Ege University, Turkey

Abstract

General entity linking systems usually leverage global coherence of all the mapped entities in the same document by using semantic embeddings and graph-based approaches. However, graph-based approaches are computationally expensive for open-domain datasets. In this paper, the authors overcome these problems by presenting an RDF embedding-based seq2seq entity linking method in specific domains. They filter candidate entities of mentions having similar meanings by using the domain information of the annotated pairs. They resolve high ambiguous pairs by using Bi-directional long short-term memory (Bi-LSTM) and attention mechanism for the entity disambiguation. To evaluate the system with baseline methods, they generate a dataset including book, music, and movie categories. They achieved 0.55 (Mi-F1), 0.586 (Ma-F1), 0.846 (Mi-F1), and 0.87 (Ma-F1) scores for high and low ambiguous datasets. They compare the method by using recent (WNED-CWEB) datasets with existing methods. Considering the domain-specificity of the proposed method, it tends to achieve competitive results while using the domain-oriented datasets.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MEC Network Resource Allocation Strategy Based on Improved PSO in 5G Communication Network;International Journal on Semantic Web and Information Systems;2023-08-18

2. Modified Transformer Architecture to Explain Black Box Models in Narrative Form;International Journal on Semantic Web and Information Systems;2022-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3