MEC Network Resource Allocation Strategy Based on Improved PSO in 5G Communication Network

Author:

Chen Yu1

Affiliation:

1. Chongqing Industry Polytechnic College, China

Abstract

Relying on features such as high-speed, low latency, support for cutting-edge technology, internet of things, and multimodality, 5G networks will greatly contribute to the transformation of Web 3.0. In order to realize low-latency and high-speed information exchange in 5G communication networks, a method based on the allocation of network computing resource in view of edge computing model is proposed. The method first considers three computing modes: local device computing, local mobile edge computing (MEC) server computing, and adjacent MEC server computing. Then, a multi-scenario edge computing model is further constructed for optimizing energy consumption and delay. At the same time, the encoding-decoding mode is used to optimize PSO algorithm and combined with the improvement of fitness function, which can effectively support the communication network to achieve reasonable allocation of resources, ensuring efficiency of information exchange in the network. In the end, the results show that when the number of users is 500, the method can complete the task assignment within 44s.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems

Reference27 articles.

1. IoT transaction processing through cooperative concurrency control on fog–cloud computing environment

2. Forecast of Large Earthquake Emergency Supplies Demand Based on PSO-BP Neural Network

3. When Digital Economy Meets Web3.0: Applications and Challenges

4. Mobile Interactive System in Virtual Classroom based on TPACK: A Study from Students’ Perspectives. Journal of Logistics;Daniel;Informatics and Service Science,2022

5. Latency-energy optimization for joint Wi-Fi and cellular offloading in mobile edge computing networks.;W. H.Fan;Computer Networks,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3