Hybrid Load-Balanced Scheduling in Scalable Cloud Environment

Author:

Jayswal Anant Kumar1

Affiliation:

1. School of Computer and System Sciences, Jawaharlal Nehru University, India

Abstract

Cloud computing is a high computational distributed environment with high reliability and quality of service. It is playing an important role in the next generation of computing with pay per use model and high elasticity. With increased requirement for cloud resources, load over the cloud servers has increased, which makes cloud use a more efficient algorithm to maintain its performance and quality of service to users. The performance metrics that define the performance of task scheduling include execution time, finish time, scheduling time, task completion cost, and load balancing on each computing resources. So, to overcome existing solutions and provide better QoS performance, a neural-network-based GA-ANN scheduling algorithm is proposed in this paper, which outperforms the existing solutions. To simulate the proposed GA-ANN model, cloudsim3.0 toolkit is used, and the performance is evaluated by comparing simulation time, average start time, average finish time, execution time, and utilization percentage of computing resources (VMs).

Publisher

IGI Global

Subject

Management of Technology and Innovation,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comparative Study of Task Scheduling Metaheuristic Algorithms in Cloud Computing;2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence);2022-01-27

2. Resource Scheduling Method Based on Microservices;Computer Supported Cooperative Work and Social Computing;2022

3. SLA-DQTS: SLA Constrained Adaptive Online Task Scheduling Based on DDQN in Cloud Computing;Applied Sciences;2021-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3