Abstract
Task scheduling is key to performance optimization and resource management in cloud computing systems. Because of its complexity, it has been defined as an NP problem. We introduce an online scheme to solve the problem of task scheduling under a dynamic load in the cloud environment. After analyzing the process, we propose a server level agreement constraint adaptive online task scheduling algorithm based on double deep Q-learning (SLA-DQTS) to reduce the makespan, cost, and average overdue time under the constraints of virtual machine (VM) resources and deadlines. In the algorithm, we prevent the change of the model input dimension with the number of VMs by taking the Gaussian distribution of related parameters as a part of the state space. Through the design of the reward function, the model can be optimized for different goals and task loads. We evaluate the performance of the algorithm by comparing it with three heuristic algorithms (Min-Min, random, and round robin) under different loads. The results show that the algorithm in this paper can achieve similar or better results than the comparison algorithms at a lower cost.
Funder
National Natural Science Foundation of China
Key Platform and Scientific Research Project of Guangdong Education Department
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献