Optimized Communication Architecture of MPSoCs with a Hardware Scheduler

Author:

Zhang Diandian1,Zhang Han1,Castrillon Jeronimo1,Kempf Torsten1,Vanthournout Bart2,Ascheid Gerd1,Leupers Rainer1

Affiliation:

1. RWTH Aachen University, Germany

2. Synopsys Inc., Belgium

Abstract

Efficient runtime resource management in multi-processor systems-on-chip (MPSoCs) for achieving high performance and low energy consumption is one of the key challenges for system designers. OSIP, an operating system application-specific instruction-set processor, together with its well-defined programming model, provides a promising solution. It delivers high computational performance to deal with dynamic task scheduling and mapping. Being programmable, it can easily be adapted to different systems. However, the distributed computation among the different processing elements introduces complexity to the communication architecture, which tends to become the bottleneck of such systems. In this work, the authors highlight the vital importance of the communication architecture for OSIP-based systems and optimize the communication architecture. Furthermore, the effects of OSIP and the communication architecture are investigated jointly from the system point of view, based on a broad case study for a real life application (H.264) and a synthetic benchmark application.

Publisher

IGI Global

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. System-Level Analysis of MPSoCs with a Hardware Scheduler;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2014

2. Efficient Implementation of Application-Aware Spinlock Control in MPSoCs;International Journal of Embedded and Real-Time Communication Systems;2013-01

3. System-Level Analysis of MPSoCs with a Hardware Scheduler;Leadership and Personnel Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3